Lecture 6

Variance and standard deviation Cumulative distributions The normal distribution

Review

- Percentiles
- Range and IQR
- The five number summary and boxplot

Cumulative Distributions

x

1

2

3

4

5

6

- A cumulative distribution shows the relationship between the value of a variable and the cumulative relative frequency
- We represent the cumulative distribution using a step function
- Data = 1,2,3,3,4,4,4,5,6,6

Cereal	Sodium	Sugar	Туре	Cereal	Sodium	Sugar	Туре
Frosted Mini Wheats	0	11	А	Froot Loops	140	14	С
Raisin Bran	340	18	А	Honey Bunches of Oats	180	7	А
All Bran	70	5	А	Honey Nut Cheerios	190	9	С
Apple Jacks	140	14	С	Life	160	6	С
Cap'n Crunch	200	12	С	Rice Krispies	290	3	С
Cheerios	180	1	С	Honey Smacks	50	15	А
Cinnamon Toast Crunch	210	10	С	Special K	220	4	А
Crackling Oat Bran	150	16	А	Wheaties	180	4	А
Fiber One	100	0	А	Corn Flakes	200	3	А
Frosted Flakes	130	12	С	Honeycomb	210	11	С

Finding Percentiles from Cumulative Distributions

Iower half middle upper half
Data = 0, 1, 3, 3, 4, 4, 5, 6, 7, 9, 10,11,11,12,12,14,14,15,16,18

Q1 = $\frac{4+4}{2} = 4$ Q2 = $\frac{9+10}{2} = 9.5$ Q3 = $\frac{12+14}{2} = 13$

What is the IQR? IQR = 13 - 4 = 8

Measures of Spread: Deviation

- A better measure of variability that uses *all* the data is based on deviations
- deviations are the <u>distances</u> of each value from the mean of the data:

Deviation of an observation $x_i = (x_i - \bar{x})$

• Every observation will have a deviation from the mean

Measures of Spread: Variance

- The sum of all deviations is zero. $\sum_{i=1}^{n} (x_i \bar{x}) = 0$
- We typically use either the squared deviations or their absolute value Squared deviation of an observation $x_i = (x_i - \bar{x})^2$
- The Variance of a distribution is the <u>average</u> squared deviation from the mean

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

• The sum
$$\sum_{i=1}^{n} (x_i - \bar{x})^2$$
 is called the sum of squares

Measures of Spread: Standard Deviation

 Since the variance uses the squared deviation, we usually take its square root called the standard deviation

$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

- The standard deviation represents (roughly) the average distance of an observation from the mean
- The greater s is the greater the variability in the data is
- We denote the population parameter for the variance and standard deviation using σ for s and σ^2 for s^2

Try it out: Computing s and s^2

Consider the following sample of 5 observations of the height of colleges students at the University of Idaho

- Data = 61,62,62,68,75
- Mean = 65.6
- What if we observe another student who has a height of x = 92 inches. How does including this observation change our estimate s

Why divide by n - 1 ?

- We divide by n-1 because we have only n-1 pieces of independent information for s^2
- Since the sum of the deviations must add to zero, then if we know the first n-1 deviations we can always figure out the last one
- Ex.) suppose we have two data points and deviation of the first data point is $x \bar{x} = -5$
 - Then the deviation of the second data point <u>has</u> to be 5 for the sum of deviations to be zero.

End of Material For Exam 1